663 research outputs found

    Search for pulsations at high radio frequencies from accreting millisecond X-ray pulsars in quiescence

    Full text link
    It is commonly believed that millisecond radio pulsars have been spun up by transfer of matter and angular momentum from a low-mass companion during an X-ray active mass transfer phase. A subclass of low-mass X-ray binaries is that of the accreting millisecond X-ray pulsars, transient systems that show periods of X-ray quiescence during which radio emission could switch on. The aim of this work is to search for millisecond pulsations from three accreting millisecond X-ray pulsars, XTE J1751-305, XTE J1814-338, and SAX J1808.4-3658, observed during their quiescent X-ray phases at high radio frequencies (5 - 8 GHz) in order to overcome the problem of the free-free absorption due to the matter engulfing the system. A positive result would provide definite proof of the recycling model, providing the direct link between the progenitors and their evolutionary products. The data analysis methodology has been chosen on the basis of the precise knowledge of orbital and spin parameters from X-ray observations. It is subdivided in three steps: we corrected the time series for the effects of (I) the dispersion due to interstellar medium and (II) of the orbital motions, and finally (III) folded modulo the spin period to increase the signal-to-noise ratio. No radio signal with spin and orbital characteristics matching those of the X-ray sources has been found in our search, down to very low flux density upper limits. We analysed several mechanisms that could have prevented the detection of the signal, concluding that the low luminosity of the sources and the geometric factor are the most likely reasons for this negative result.Comment: 5 pages, 3 figures. Accepted for publication by A&

    Modelling the closest double degenerate system RXJ0806.3+1527 and its decreasing period

    Full text link
    In the hypothesis that the 5.4m binary RXJ0806.3+1527 consists of a low mass helium white dwarf (donor) transferring mass towards its more massive white dwarf companion (primary), we consider as possible donors white dwarfs which are the result of common envelope evolution occurring when the helium core mass of the progenitor giant was still very small (~ 0.2Msun), so that they are surrounded by a quite massive hydrogen envelope (~1/100Msun or larger), and live for a very long time supported by proton--proton burning. Mass transfer from such low mass white dwarfs very probably starts during the hydrogen burning stage, and the donor structure will remain dominated by the burning shell until it loses all the hydrogen envelope and begins transferring helium. We model mass transfer from these low mass white dwarfs, and show that the radius of the donor decreases while they shed the hydrogen envelope. This radius behavior, which is due to the fact that the white dwarf is not fully degenerate, has two important consequences on the evolution of the binary: 1) the orbital period decreases, with a timescale consistent with the period decrease of the binary RXJ0806.3+1527; 2) the mass transfer rate is a factor of about 10 smaller than from a fully degenerate white dwarf, easing the problem connected with the small X-ray luminosity of this object. The possibility that such evolution describes the system RXJ0806.3+1527 is also consistent with the possible presence of hydrogen in the optical spectrum of the star, whose confirmation would become a test of the model.Comment: 13 pages, 4 figures, accepted for publication on ApJ, main journa

    The magnetospheric radius of an inclined rotator in the magnetically threaded disk model

    Get PDF
    The estimate of the magnetospheric radius in a disk-fed neutron star X-ray binary is a long standing problem in high energy Astrophysics. We review the magnetospheric radius calculations in the so-called magnetically threaded disk model, comparing the simplified approach originally proposed by Ghosh & Lamb (1979) with the revised version proposed by Wang (1987), Wang (1995), and Wang (1997). We show that for a given set of fixed parameters (assuming also a comparable screening factor of the neutron star magnetic field by the currents induced on the disk surface) the revised magnetically threaded disk model predicts a magnetospheric radius that is significantly smaller than that derived from the Ghosh & Lamb (1979) treatment. For a fixed value of the neutron star magnetic field and a wide range of mass accretion rates, the inclusion of a large inclination angle between the neutron star rotation and magnetic field axes (χ\chi\gtrsim60 deg) leads to a further decrease of the magnetospheric radius. To illustrate the relevance of these calculations, we consider, as an example, the case of the transitional pulsars. During the so-called "high mode" of their sub-luminous accretion disk state, these sources have shown X-ray pulsations interpreted as due to accretion at an unprecedented low luminosity level compared to other neutron stars in X-ray binaries. In the context of the magnetic threaded disk model, we show that accretion at luminosities of \sim1033^{33} erg s1^{-1} (and thus accretion-driven X-ray pulsations) can be more easily explained when the prescription of the magnetospheric radius provided by Wang (1997) is used. This avoids the need of invoking very strong propeller outflows in the transitional pulsars, as proposed in other literature works.Comment: Accepted for publication in A&

    A Firm Upper Limit to the Radius of the Neutron Star in SAX J1808.4-3658

    Full text link
    We show that observations of X-ray pulsing from SAX J1808.4-3658 place a firm upper limit of 13.8 m^{1/3} km on the radius of the neutron star, where m is its mass in solar units. The limit is independent of distance or assumptions about the magnetospheric geometry, and could be significantly tightened by observations of the pulsations in the near future. We discuss the implications for the equation of state and the possible neutron star mass.Comment: (7 pages, 1 figure, accepted for publication in ApJ Letters

    The Broad Band Spectrum of MXB 1728-34 Observed by BeppoSAX

    Full text link
    We report on the results of a broad band (0.1-100 keV) spectral analysis of the bursting atoll source MXB 1728-34 observed by the BeppoSAX satellite. Three bursts were present during this observation. The spectrum during the bursts can be fitted by a blackbody with a temperature of 2 keV. From the bursts we also estimate a distance to the source of 5.1 kpc. MXB 1728-34 was in a rather soft state during the BeppoSAX observation. The persistent spectrum is well fitted by a continuum consisting of a soft blackbody emission and a comptonized spectrum. We interpreted the soft component as the emission from the accretion disk. Taking into account a spectral hardening factor of 1.7, we estimated that the inner disk radius is Rincosi20R_{\rm in} \sqrt{\cos i} \sim 20 km, where i is the inclination angle. The comptonized component could originate in a spherical corona, with temperature of 10 keV and optical depth of 5, surrounding the neutron star. A broad gaussian emission line at 6.7 keV is observed in the spectrum, probably emitted in the ionized corona or in the inner part of the disk. Another emission line is present at 1.66 keV.Comment: 12 pages, accepted by Ap

    A Radio Pulsar in SN1987A?

    Get PDF
    A complex three-ring shaped structure has been reported extending some arcseconds around the SN1987A central spot by several authors. This structure is believed to arise when a thin shell of matter surrounding the supernova was illuminated by the initial extreme-ultra-violet flash from the explosion of the progenitor. In this view the two ring-shaped outer loops, 300 in size, are interpreted as limb brightening of an hourglass-shaped nebula surrounding the supernova, while the smaller central ring is located at the waist of the hourglass. Our explanation of the two external loops is different: keeping the hourglass-shaped nebula scenario, we believe that these loops result from the interaction of this nebula with a double beam of relativistic particles emitted by a young pulsar formed by the supernova

    A Radio Pulsar in SN1987A?

    Get PDF
    A complex three-ring shaped structure has been reported extending some arcseconds around the SN1987A central spot by several authors. This structure is believed to arise when a thin shell of matter surrounding the supernova was illuminated by the initial extreme-ultra-violet flash from the explosion of the progenitor. In this view the two ring-shaped outer loops, 300 in size, are interpreted as limb brightening of an hourglass-shaped nebula surrounding the supernova, while the smaller central ring is located at the waist of the hourglass. Our explanation of the two external loops is different: keeping the hourglass-shaped nebula scenario, we believe that these loops result from the interaction of this nebula with a double beam of relativistic particles emitted by a young pulsar formed by the supernova

    Measuring the spin up of the Accreting Millisecond Pulsar XTE J1751-305

    Full text link
    We perform a timing analysis on RXTE data of the accreting millisecond pulsar XTE J1751-305 observed during the April 2002 outburst. After having corrected for Doppler effects on the pulse phases due to the orbital motion of the source, we performed a timing analysis on the phase delays, which gives, for the first time for this source, an estimate of the average spin frequency derivative = (3.7 +/- 1.0)E-13 Hz/s. We discuss the torque resulting from the spin-up of the neutron star deriving a dynamical estimate of the mass accretion rate and comparing it with the one obtained from X-ray flux. Constraints on the distance to the source are discussed, leading to a lower limit of \sim 6.7 kpc.Comment: 7 pages, 3 figures, Accepted for publication by MNRA

    The spin and orbit of the newly discovered pulsar IGR J17480-2446

    Get PDF
    We present an analysis of the spin and orbital properties of the newly discovered accreting pulsar IGR J17480-2446, located in the globular cluster Terzan 5. Considering the pulses detected by the Rossi X-ray Timing Explorer at a period of 90.539645(2) ms, we derive a solution for the 21.27454(8) hr binary system. The binary mass function is estimated to be 0.021275(5) Msun, indicating a companion star with a mass larger than 0.4 Msun. The X-ray pulsar spins up while accreting at a rate of between 1.2 and 1.7E-12 Hz/s, in agreement with the accretion of disc matter angular momentum given the observed luminosity. We also report the detection of pulsations at the spin period of the source during a Swift observation performed ~2 d before the beginning of the RXTE coverage. Assuming that the inner disc radius lies in between the neutron star radius and the corotation radius while the source shows pulsations, we estimate the magnetic field of the neutron star to be within ~2E8 G and ~2.4E10 G. From this estimate, the value of the spin period and of the observed spin-up rate, we associate this source with the still poorly sampled population of slow, mildly recycled, accreting pulsars.Comment: 5 pages, accepted by A&A Letters on 2010 Nov 30. Timing solution derived on a longer time interval with respect to the previous versio
    corecore